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\‘ A comptuer code has been developed to model the nonlinear response of
reinforced concrete elamnts subjected to plane strain, plane stress or
axisynmetric loading conditions. The material subroutine includes the follo-
wing sources of nonlinear behavior: (a) Nonlinear stress strain curve for
concrete as represented by the endochronic model; (b) stress-strain curve
fof the reinforcement including the elastic, plastic and strain hardening
stages; (c) concrete anisotropy caused by complex stress states and cracking;
ard (d) the postcracking shear transfer mechanisms.

The computer code has been checked with a wery limite;d amount of
experimental data for plain concrete and for an initially cracked reinforced
concrete pariel subjected to biaxial stress states. In general, the code
predicts results that agree satisfactorily with the experimental:data but

needs to t‘,vf further checked against additional test cases.
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1. Introduction and Objoctives:

1.1 Introduction:

The nonlinear analysis of roinforeed conerete structures by the finito
element method cannot be succesfully performed if the principal sources of ma-
terial nonlinear bechavior are not included in the formulation. The material
characteristics that have to be considered are the nonlinear stress strain re-
lation for the concrete, the stress strain relation for the reinforcement,
concrete anisotropy due to complex stress states and cracking, postoracking
shear transfer mechanisms at open cracks, and the concrete reinforcement bond
slip relations.

This report presents a computer subroutine for the nonlinear analysis of
reinforced concrete elements that includes the nonlinear stress strain rela-
tions Ior the concrete and the reinforcement, concrete anisotropy due to

cracking and multiaxial stress states, and the postcracking shear transfer

mechanisms present at a slightly open crack. The nonlinear behavior of the

concrete 1is represented by the endochronic model (5 ) while the stress strain -
‘relation for the reinforcement represents the elastic, plastig and strain
hardening stages under monotonic or repeated loads. The postcracking shear
transfer mechanisms included in the subroutine are the interface shear trans-
fer mechanism on the rough surfaces of a cracked plane and the dowel action of
the reinforcement crossing the crack. The subroutine develoned uses the
distributed crack approach to combine the stiffness matrix for the uncracked
concrett_a with the stiffness relation for the cracks that predicts the incremen~

tal stresses induc~d in a reinforced concrete finite elemznt by a set of

prescribed incremental strains.
The different sections of this report describe first the constitutive
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rolations aved Tor the comerete, acinforeoment aad for the «‘r.u‘k:;; Tollowsd by |

a detailed discussion of all the code subroutines. Finally, several exverimen-

tal tests are compared with thoe results predicted hy the computer progyram to
dotermine its validity. 3
( 1.2 Objectives: 3
The principal objective of this proaject was to develop a material
subroutine that included the principal sources of nonlinear behavior in’ rein- e*
5 forced concretes Te specific objectives are:
A. Development of a material subroutine that calculates the incremental
E stress vector caused by a given vectcr of strains in a plane stress, strain :
or axisymetric finite element. The subroutine should consider the nonlinear l
F behavicr caused by the following sources: |
r 1. Stress strain relation for concrete based on the endochronic | Zj
model presented by Bazant (2,3 ). :
2. Concrete anisotropy caused by cracking and multiaxial stress

states.

-

3. Fostcracking shear transfer mechanisms. Both the interface
shear transfer and the dowel action stiffness representation are included in

the subroutine.

RPN

4. Stress-stvain relation for reinforcement that rodels the elastic,
plastic, and strain hardening stages for nonotonic and repeated loads.

B. Comparison of the material subroutine code predictions with available

experimental data to establish the valitidity of the proposed formulation.

2. Oonstitutive Ralations for Nonlinear Analysis of Reinforced Concrute

2.1 Introduction:

The following sections present the theoretical backyround required to imodel
the noilinear behavior of reinforced concrcte in the computer program. First,
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the cvmsbitnl ive yolat fons vsed tor conaerebey, an given by Phey cabochinge
mxde ), are discussed, follomed by the conskbitutive reolat iong caployed to mowded
the behavior of the reinforcwment. subjoctod to maotonic or roproated Toods,

For eloments that have not crackad, the concrete and steel stifMmess relations

in tormg of the global coordinat e can be added to obtain an increnental st rens-

strain relation for the reinforeced concrote element. For elements that have
cracked, however, the incremental stiress-strain relation has to consider the

constitutive relation for the cracks, presented on the last section of this

chapter.

2.2 Constitutive Relations for Concrete:

Several theories have been devloped to predict the response of plain con-
crete to multiaxial stress states among which are the linear and nonlinear
elasticity theories, the work hardening plasticity theories', the plastic fraé—
turing theory, and the endochronic theory (4,8). Of tnese theories, the
endochronic theory has received particilar attention as it provides a contin-
ous mpdel for the nonlinear represcntation of concrete without the explicit
formulation of a yield condition and hardening rules. The endochronic model
developed by Bazant and co-workers (2,5 ) have been used succesfully to
predict the nonlinear stress-strain curve for concrete subjected to monotonic
or repeated loading. ‘

The endochronic cheory for concrete initially proposed by Bazant ( 2 )
introduced a non decreasing scalar variable, denominated intrinsic time, to
represent the accumulation of inelastic strains as a function of the stfain
increments applied to the element. The intrinsitive increments were assumed
to be sensitive to t.\;: hydrostatic pressure.. The theory also modelled the
strain hardening and strain softening regions of the stress strain curve for

concrete, the inelastic dilatancy due to shear straining measured by another

non-decreasing scalar variable, and the dependance of the incramental
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olastic mxiuli on the dilat:mey oo,

The initial ondochronico nedel projosaed by Bazant was lator rofined (5 ),
to include the additional inelastic stroing caused by hydrostatie compression,
voline chargies in the strain softoening range of the stress strain curw,
dopondance of material paranotors on strength, and an inproved degseription of
the strain softening behaviur wider monotic or repeated loading. The refined
endochronic model was used to represent the nonlinear behavior of concrete in

the material subroutine.

2.2.1 Endochronic Model for Trialxial Behavior of Concrete

The stress strain relations for the endochronic model are given in terms

of the deviatoric and volumetric relations, as follows:

"
bejy = égl + ey : la
Ae = A0 + Act' 1b
3K

deviatoric camonents of strain and stress:tensor,

Where: Aeij R ASij

respectively.

Ae, Ao = volumetric conponent of strain and stress tensor,
respectively.

Aeii = 1inelastic deviator strain increment.

A" = 1lnelastic volumetric strain increment

K, G = Bulk and shear nodulus.

i,j = Cartesian coordinates indexes.

The volumetric components of the strain and stress vectors are camputed

from:

AC‘ = £11 t €22 + 33 2a

Ao = 011 + 2 + 033 2b

while the deviatoric camponents are obtaired from:
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ASU = Aoy, - ‘Sij !3\_9_ "
wWhere: 6ij = KroneCer Delta given by:
= 1lfori =~
= 0fori# 3
The inelastic deviatior strain increment is a function of the distortion -

intrinsic time parameter, 2, and of the deviatonic stress, Sij+ given by:

Ae'.'. = f’_l_l 4
1] 20 4

The inelastic volumetric strain increment is a function of the volumetric
stress, o, the inelastic dilatancy A, the shear compaction A', and of the com-
paction intrinsic time parameter z' . The campaction intrinsic time parameter
2 have been introduced to account for the volumetric inelaétic strains caused
by hydrostatic stress states, while the shear campaction parameter A" accounts
for the increased volumetric strains observed in triaxial stress tests when '
comgarad to hydrostatic stress tests. The inelastic volumetric strain is given
by:

A = M+ S oAz + A ‘ 5

Thus, the inelastic deviatoric and voluretric strains are a function of the
distortion intrinsic time Z, the campaction intrinsic time z' , the inelastic
dilatancy A, shear compaction A', the bulk and shear modulus, and the volume-
tric and deviatoric stress camponents present in the element. The endochronic
parameters and the bulk and shear modulus are computed from the set of équa-
tions summarized in Appendix Al. It shculd be noted that the functions used to
calculate the intrinsic time parameters, inelastic dilatancy and shear conpact-
ion are a function of the current stress and strain invariants, and of the
principal stresses in the element. Therefore, for a prescribed strain

increment, the associatted stress increment has to be computed in an iterative
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Fashion amtil the endoctronie poraneters ol any given iterat jon converoge to
uthose of the previous ileration.  in e aonputer code, the iteration is temi=

' -‘7'_\'-,-,1A\a.tcd-whon t‘hc: dif l'orcn.\cu bebween Lho previous atdd current Val.ucs of ‘the inclas-

PRTE N A

t1c dllat.ancy and shear canpact ion paraneters in within 0.01.

b cnde.

Y TE should be' nnl(\(l Lh.-l the l.")(t(‘\.lmlllrlL(.'(l values ol “everal ondodu't)mcv
paraneters, as well as for the stress and strain vectors, are requlred for the

'?“:eqtatlons glven in Appendlx Al. 'I‘he current value of any parameter at the end

of a straln J.ncrement is calculated from the 1ncrement of sa1d parameter computed.‘

.when the 1terat10n is flnlshod, and the value obtained in the previous strain

. :mcrenent .

The stress strain relations in terms of deviatoric and volumetric compo-

nents gJ.ven by Equa*'lon 1 can be ccmblned to obtain an 1ncremenfal stress strain
relatlon in: terms of the element coord_mates, using the relatJ.ons given by

Equation 3. Rearranging Ixjuations 1, we hawve

ASi5 = 2G ey - 26 Ae'i:'j » - 6a
. | ¥

po K e - 3K A | . éb E

If we deflne the second term of the right hand 31de of Equation 6 as an

i

equivalent inelastic deviatoric and volumetric stress increment, we then can

: ..rearrange Equation 6 in the following form:

e ey o

te '
ASjj + BSjy = 26 heyy ' 7a 3
Ao + Ad'' = 3K Ae 7b |
, Where:
ASL} = deviatoric stress increment ) ‘

Au volumetric inelastic stress increment

The incremental stress-strain relation in terms of the element coordinates

can then he obtained by adding Equations 7a and 7b. Thus

bog4 + (ASy +a jo0'") = 2G te;

ij t K $;i5 be 8

Where:
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olastic stieas incvomenl

roeforred to the eloment coopdinaten

In matrix form, the incremental stross strain relation is then given by

the following”relation, where the axis dircctions are defined in Figure 1.

.A011
A()zz

Ao33
4 A012

A013

L AQ23

Where:

)

+

P

’ ]

/\()1

2G

[}
A022

[
Aoy,
.
*A()lé ) =

te
A013

1)

. j'
D, b b, 0 o o} |

2
1)2 Dy I)2 0 0 0

_ N 1
o 0 o0 D3 D 0
o 0 0 0 Dy 0
o 0o 0o 0 0 5|

.
AL]l
22
A€33

9a
Aﬂlz
Ar13
AL23

9b

A 9c

9d

For plane stress conditions, the following boundary conditions are known:

A022 = A013 = AUZB = Aﬁlz = AC23 = 0

Henceé the incremental stress-strain relation is given by:

rAGll

Ao33

004 3

where:
D

Aoll
P

o33

Ac, P

11

P
+ A033

Ao

13

—p.2 -p-2 ]
Dy-D,* /Dy D,=D3“/D; 0
= 2 2
= DZ-DZ /Dl Dl-Dz /Dl 0
0 0 Dy

Eg Anéé
Dy

t
Dy Aoy,
by

and the strain component in the normal direction is given by:

Aszz

Aoéé - D2 (Aﬁll + Aﬂal)

Dy

1C
Acll
AC33 1la
Aﬁl3 J
11b
llc
114

bk B

[

i
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Py plain steadn conditions, the Tl owing bovmdony condit fons o ke

,/\012 = A($23= A 22 = /\r,12 = /\!i23 = 0 12

lience, the following incremental stress-strain relation results:

Aoqq /\0; ; i)l D2 0 . f '/\v 11
Mogg by L Aoa3 o | D, Dy 0 M54 4
Aol3 Aoi; 0 0 b3 Aiil3
The normal stress in the third direction can be con{puted from:
Mgy = Dy (A Y A gy = Ao 14

Equations 11, 13, and 14 have been implemented in the computer code to
calgulate the stress increments for planc strain or plane stress conditions.
For a prescribed vector of incremental strains, the corresponding elastic incre-
mental stress vector can be conputed from these equations once the elastic
stiffness coefficients and the inclastic stress increment vector have been cal-

culated from the endochronic parameters.

2.2.2 Linearization of Endochronic Formulation

The incremental stress-strain relation given by Equation 9a is expressed
in terms of an elastic and an inelastic stress vector. This relation is
adequate when the concrete stiffness matrix does not have to be combined with
the crack constitutive relation. For this cases, the endochronic stress
strain relation needs to be formulated in the following form:

{Ao}= [D'] {Ac} ' 15
wWhere: |

{1

{2e}

[D'] = matrix of elastic stiffness coefficient for linearized endochro—

incremental stress vector referred to the element coordinates.

prescribed incremental strain vector referred to the element

coordinates.

nic formulatiomn.
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curvad inclastic stiffness locus of the ondochronie theory is replaced by a
tangont to the curved locus at the point of assumed strain incremont (1),

This requiroment can bo ostablished i the equation used to compute the distor-
Lion measuee parameter,  (Faguation ALA in Appendix ALY is replaced by the

following relation.
Aeij . 16
AE = - — Aej_j :

*The deviatoric inelastic stross vector component can then be expressed

by:
‘l 1] F
Where:
Acvs s
B - e : - 17b

+J 24/Jz (Aeyiy)
The volumetric ineclastic stross vector component can then be expressed by:
po = B0H a4 3k(ReLHL") Bjg feys ) 18
Hence, the incremental stress strain relations in deviatoric and volumetric

conponents are given by:

. F Brg
Asl:j = 2G AelJ - Sl] ( __‘“era) . /\‘ers 19a
As = 3K b6 - (%gh>Au + 3K (L4 0L)) Bg . Aepg 19
2

The total incremental stress vector, referred to the element coordinates is
then given by the following indicial relation:

Bogy = (2681rd4s = 51T B - 3K (£.1#27.L") 815 Brg) Aepg

Zlf
+f{K - cH .
( -Z—;h) ‘Sij 'Skm ALkm 20

The elastic stiffness coefficients in Equation 15 are then given by the

following equation:

ot e b e kit a2 el
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In the computer program, the ahove calculations are performed only for the

in plane normal and tangential stresses and strains, and for the normal stress

and strain in the direction perpendicuiar to the plane considered. Thus, once

the deviatoric stress and strain components for each direction is calcudlated

the coeficients B,

Iet the

ij
variable x be defined by:

F ' !
i +3K (. L+ 2' . L)
1

e

[
h

are oomputed together with 1ts volumetric component.

22 .

Then, the elarents in matrix [D'] are given by the following equations

for the general case of plane stress or strain:

D' (1,1)

D' (2,2)
L]

D' (3,3)

D (4,4)
D' (1,2)
D' (1,3)

D' (1,4)

p'(2,1)
D' (2,3)

D' (2,4)
D' (3,1)

L 4 . _ ol B
=K+ -G -2 - X B - “nn
11 (P11 T 22

3 3Z2h ( 3

4 oH B
K+3G-— -~ Xpp (B - mn

3%,h ( 3
=K+4G-oH —X33 (1333-Bnn

3 3Zoh 3

It

B

- 2 agll -
=K-£4G- 01 - X B. nn
3 375h n 2 ==
= 2
-wdo- @ -xy @y - Bm
3750 (33 3
= —Xj1 Byy

=K=-26 - ol - Xy Byy =By
3 Ioh ( -5

=k-26 -M -x. 3, -5n

37,h 3
= = Xpz Byy
=K=-~2G - ol - X B.-4 - B
T om,y Bt o

23a
23b
23c
23d

23e
23f

23g
23h

231

23]
23K .
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D'(3,4) = -Xy5 By, 23m
D' (4,1) = -X44 B f‘%ﬂ) 23n
D'(4,2) = = Xyq( By, - 1—1‘3‘-'1 ) 230
D (4,3) = - Xy (Byy - _Tw_) 23p J
Bin = By + By, + By3 2% #
The stress strain relation given in Equation 15 is referred to the ;
element local coordinate system, which for the computer program has been assumed )

to be oriented along the principal stress axis. To obtain the incremental stress

strain relation in terms of global coordinates the stiffness matrix [D'] shall

be transformed to the global axis my means of the following relation:

=[] 7 [o'] ] 24

~
lw]
—a
[Te]
[

vk

et ewhl

stiffness matrix for concrete inh global coordinates

—
o
—
[Te]
L[]
oy

[T ] = transformation matrix given by:

[ 2 s 0 2cs |
0 1 0 0 ]
=] - s c? 0 -2cs % %g
s cs 0 c2-5|
C = cos « %
S = sin « é
a = .angle between global and local coordinate axis

(See Figure 1)
2.3 Constitutire Relations for:Reinforcement: : ;

The constitutive relations for the reinforcement subjected to monotonic
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reinforced concrete structures. A typical stress-=strain curve for the reinforce-~
ment subjected to monotonic loading is shown in Figure 2. Three different
stages cf bohavior are evident, namely, the elastic range, the plastic range,
and the strain hardening ronge. buring the olastico stage, the rolation between
stress and strain is linear and is given by the modulus of elasticity of the
reinforcement. For the plastic range, the strain increases continously; at a
constant stress and the modulus of elasticity is zero. For the strain harde-
ning region, a nonlinear rclation cxists between stress and strain, and a much
more complicated stiffness relation has to be determined from experimental
data.

The following relations have been suggested (7 ) to model the stress-

strain curve for monotonic loading up to failure.

ElasticRegion(e<ey)s fg = E- 26a
Fg = 29000 Ksi 26b
Plastic region (ey<t<igh): fg = fy ' 26¢
E =0 264
Strain hardening region (it =<t g,)s
£ = £, ['1_’12((—Q.sh)+2 + (e-rgp) (fsu - 1.7)] 260
600 =tgp) +2  (tgy—rgn)\ fy
E = 104¢y + fsu+ 17§ 26f
(60(r—t‘sh)+2)Z £, {Egu = Tsh)
Where:
fs = steel stress at strain ¢
fy = steel yield stress
fgy = steel ultincte stress
¢ = actual steel strain
Cy = Steel yield strain
tgn = Steel strain at the initiation of strain hardening
s
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= RBElastic modulus of elasticity
= Modulus of clasticity at given strain

The monotonic stress-strain curve serves as an envelcpe for specimens
subijocted to repoated lmdinq:. Upon initial loading, the stress=strain is si-
milar to that for monotonic loading. Upon unloading, the stiffness is similar
to the linear loading stiffness but a residual displacement will be observed if
the specimen has been strained to the plastic range. When the specimen, is sub~-
soquently loaded, the stitss-strain relation is linear until it coincides with
the monotonic stress-strain curve, whereupon it follows the virgin stress-
strain relationship.

The above constitutive relations are valid for uniaxial stress states
only. For reinforcement oricnted alorg 3 arbitrary directions, the constitutive

relation is given by:

[0]® {AL} 27
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incremental stress in reinforcement along bar orientations
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prescribed incremental strain in reinforcement along bar
orientations

s , . .
[D] = reinforcenent Stiffness matriy

The reinforcement stiffness matrix referred to the bar directions as given

by:
0 o9 o 0
s _ 272
[D] ) 0 0
. D3E3

where: .

#

P1¢P2eP2 reinforcement ratios along bar directions 1, 2, and 3.

modulus of elasticity of reinforcement along bar directions
1, 2, and 3.
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I general, the hon diveet fones do nol eoineide with the pineipal strenn
oricntation used to compute the concrete stiffness matrix.  In this case, the
stiffness matrix for the reinforcoment must be transformed to the principal
axis by the following rclation:

(ol = 01" 17 [ 29

Where:

1

[D]S stiffness matrix for the rcinforcement referred to the principal
d axis . |
The incronental strosses in the reinforcoment can be calculated once the

prescribed incremental strains in the reinforcement and the modulus of elasticity
for each bar direciion has been determined. The modulus of elasticity for each
bar direction required by Equation 28 is obtained from the stress-strain curve
for the reinforcement given in Equation 26, It must be noted however, that

when the strain in the reinforcoament is largoer than the yield strain y and

the element is unloaded, & new yield point must be defined at the maximum strain
achieved during the loading step. The computer subroutine that calculates

the incremental steel stresses determines whether the bars are being loaded or
unloaded and computes the stiffness fi = each bar direction according to the
prescribed total strains. For bar directions that are unloaded tﬁe code auto-

matically shifts the position of the yield strain to obtain the correct stiff-

ness for the reinforcement direction considered.

2.4 Constitutive Relations for Postcracking Shear Transfer Mechanisms:

The postcracking shear transfer mechanisms have been identified as ‘the
interface shear transfer on the rough surfaces of the crack and the dowel action
of the reinforcement ‘crossing the crack. The interfece shear transfer
mechanism is used to describe both the bearing and frictional forces generated

at open cracks as thc protuding particles on each side of the cracked surface

coame into contract. Various experimental investigations ( 9 ,11 ,15 ) have
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shear transfer : tiffrness ave the initial crack width, the axial stiffness of
the reinforcement crossing the crack, and the application of cyclic

loading.

The dowel actich mechanism is provided primarily by the berding and
shearing stiffness of the reinforcement as a tangential displacement is experi-
enced along the crack length. The dowel stiffness of the bar depends mainly
on the bar diameter, the concrete tensile strength, the axial stress in the
reinforcament and the application of cyclic loadings.

On an cracked surface of a reinforced concrete element, both mechanisms
are activated similtaneously to transfer the applied shear force across the
crack. A conplete matheratical description of the forces and displacements
oxperienced across the crack can he obtained if a flexibility relationship of

the following form can be established:

r AS,, Fy F, ' Aoy

t AGS = Ag ‘ F3 F4 Aont ' 30
Vhere:

Aén = pormal displacement at crack

AS s tanagential displacenent at crack

Aoy, = normal stress at cirack

A”nt = targential stress at crack

Fy. Fy, Fy, VF4 = flexibility coefficients at crack

Ac = area of shear plane

The flexibility coefficients reqiired for Equation 30 have been derived
in Ref. 12 by applying incremental unit normal and shearing stress as at the

cracked surface and calculating the associatted incremental normal and shear

displacements.
Ceefficient Fy reflects the change in normal displacement experienced at
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the crack when an incramenval anit notmad ooy dappd fod to the shear ploane,

This coetficient can be simply described by the inverse of the normal restraint

stiffness provided by the rvinforcement crossing the crack, defined by:
Kn = A_PL_ 31

3
H
J
a
2
3
Ed
4
k|

E Hence, coefficient P‘4 is given by:
7 F, = 1 = 1 32 i
R, 8240, «
! Where the rormal restraint stiffress K,, is calculated from the relation pro- ﬂ
- posed by Jimfnez, ct al. ( 13) j
i The flexibility coefficient F, represents the increase in normal displace-
- nent caused by the applied shear. If it is assumed that the increase in crack . :
width or normal displacement is caused mainly by the interface shear transfer
- stresses, tie increase in crack width can be calculated from the normal stresses *j
induced by the applied shear. Based on an expression proposed by Reinhardt '
# and Walraven (17), the change in crack width can be calculated from: , |
N 0.176¢72% + (0.22¢7 %2 - 1.030) 1 . ' 1
PR 0.1353, 0% 4 (0.164¢™7°7-1.379) £
Where: ‘ E;
a = ratio of interface shear transfer stiffness to the sum of the‘ i
interface shear transfer and dowel action stiffness. ':
f; = concrete compressive strength (ksi). 3
c = 1nitial crack width (in.).- :

The flexibility coefficient F3 can be calculated if it is assumed that the
increase in shear displacement is caused by the reduction in the interface

shear transfer stiffrress assouciated with a larger crack width. In mathematical i

terms,
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the change in crack width will be obtained once the equation for the coefficient Fy

is obtained. Note that in Byuation 34, the change in normal displacerent with
respect to the change in normal stress is proportional to the normal restraint
stiffnegs.  Thus, Kquation 34 can be rowritton as:

T &

The flexibility coefficient F, represents the incremental shear di%placemant
cxperienced at the crack when an incremental unit tangential shear foree is
transferred across the crack. The shear displacement is inversely proportional
to the total stiffness provided by the interface shear transfer and the dowel
action mechanisms. Given the stiffness of both mechanisms, the function F, can

be calculated from the follawing cquation:

Fp= 1 36
l\a + I\d
Where:
Ky = interface shear transfer stiffness (K/in)
Kq = dowel stiffness of reinforcement crossing the crack (k/in)

Based on a review of sewveral relations available for the inte;‘face shear
transfer and dowel action stiffness, the following equation was selected

from Reference 12.

Interface Shear Transfer Stiffness:
he s | 37
3.9(c-0.002) + 1.09x16™’ (3.4 x 10~ - K\

Ka =

°

Where

interface shear transfer stiffness

X
]
"

normal restraint stiffness

=
!
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. []
Kd - BZ -h‘“l 0.5 e 9'5 I 10’3(11
oy v B 2 Iy 1/2
2 (_'_f du - 0“2r ﬁ(l] + 4 B] db fc V(]U 6(]]
5 : ,
L= 3 x 10-'3 o]
Where:
Bl = 1'2fs/fy) > 0
1073 oy £
amd

g = 2 forVy < 0.9 Vgy
nyg = 62 for Vq > 0.9 Vg,
ay = 0 for V4 < 0.9 Vdu

g = =54 for Vg > 0.9 Vyu,
dq = dowel displacement (in)

f. = axial stress in reinforcement (Ksi)

s
fy = vyield stress of reinforcement (ksi)
Vgy = ultimate dowel capacity of reinforcement (K)

db = bar diameter (in)
The ultimate dowel capacity of the reinforcement is controlled by whether
the dowel will fail by yielding of the reinforcenent or by concrete splitting.

Thus, the ultimate dowel load is given by the smaller of the values predicted

by the following relations:

Failure by yielding of the reinforcement:

. 2 —_
Vay = 0.92% ,/fy f&

Where:
de = dowel failure load caused by yielding of the reinforcement (Kips)
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I’y = yield styenn of the reinforeoenent (Kat)

Failure by concrete splitting:

0.54 N
Vo ™ B 0.47 + = m 44
P+
m,2
wWhere:
Vao = dowel failure load caused by concrete splitting (Kips)
b T net width of section perpendicular to load direction (in).

m, = nurber of bars per layer.
c = smaller of side or bottam concrete cover of the reinforcement (in)

Thus, the flexibility coefficient F, can be obtained from BEquation 36
once the interface shear transfer and dowel action stiffness have been calcu-
lated from Equations 37 and 38. | "

The equation for coefficient Fy can now be presented once the first

derivative of Equation 37 with respect to the initial crack width is computed: -

Fy = L [3.9 - 1.00x107 Kq ] AV 45
Kn : o
2 .
where:
AVO = sghear stress increment applied in previous step.

2.5 Constitutive Relations for Cracked Reinforced Concrete

The incremental stress vector induced by a prescribed strain increment in
a reinforced concrete element can be obtained from the incremental stress
vectors sustained separately by the concrete and the reinforcement, provided
that the concrete element has not cracked. If we assure that the average
straing in the concrete and the reinforcement are equal, then the total incre-

mental stress can be calculated from:

{AG}T = [[D'] + [D]‘] {Ar;}
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[D ] stiffness matrix of uncracked concrete element : E

P]°

For rcinforced concrete elements where the principal tensile stress has

total incromental stress vector

prescribed incremental strain vector

stiffness matrix of reinforcement

. exceg@ed the maximum tensile strength of the concrete, the incremental stress A

véctdr is a function}__ of the tangential and normal stresses transferred across %%

i_ the crack. For this cases the constif:utive relation given in Equation 46 has ’

i:: Iz to be modified as described subsequently. ,:

? .. | When the principal tensile stress exceeds the maximum tensile strength of |
% the concrete the prescribed incremental strain calculated for the current step

has to be divided into the incremental strain required for ti1e element to crack

and the remaining incremental strain necessary to complete the total incremental i
strain computed for the current step. Hence,
2

{ad}= {ae}+ {ac} 47 k
Where: | '
{Ac} = total incremental strain at current time step §
{AE} 1= jincremental strain required for crack initiation %%
{AE.} 2= jincremental strain required to camplete the total strain increment 54
‘ assigned to cur.ent step. :
The incremental strain required for the element to crack is estimated from ,

the proportion of the stress increment at which the principal stress equals the
tensile strength of the concrete. Said proportion is given by:
n-1

" “p1 . 48




N
f‘ " tenaile stiongth of concrel e
“pln = principal tonsile stress at current step.
opr ™1 = principal tensile stress at previous step

Thus, the incremental strain at which cracking ocurred is given by:

{m&l = p{m} 49

The remaining incremental strain to be applied to the cracked element

TR T T T T Y
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during the current step is then given by:

R ST I . 50

The incremental strain applied to the cracked element required to complete

il st g G

the current step is distri